类 OLSMultipleLinearRegressionTest

java.lang.Object
org.hipparchus.stat.regression.MultipleLinearRegressionAbstractTest
org.hipparchus.stat.regression.OLSMultipleLinearRegressionTest

public class OLSMultipleLinearRegressionTest extends MultipleLinearRegressionAbstractTest
  • 构造器详细资料 链接图标

    • OLSMultipleLinearRegressionTest 链接图标

      public OLSMultipleLinearRegressionTest()
  • 方法详细资料 链接图标

    • setUp 链接图标

      public void setUp()
      覆盖:
      setUp 在类中 MultipleLinearRegressionAbstractTest
    • createRegression 链接图标

      protected OLSMultipleLinearRegression createRegression()
      指定者:
      createRegression 在类中 MultipleLinearRegressionAbstractTest
    • getNumberOfRegressors 链接图标

      protected int getNumberOfRegressors()
      指定者:
      getNumberOfRegressors 在类中 MultipleLinearRegressionAbstractTest
    • getSampleSize 链接图标

      protected int getSampleSize()
      指定者:
      getSampleSize 在类中 MultipleLinearRegressionAbstractTest
    • cannotAddSampleDataWithSizeMismatch 链接图标

      public void cannotAddSampleDataWithSizeMismatch()
    • testPerfectFit 链接图标

      public void testPerfectFit()
    • testLongly 链接图标

      public void testLongly()
      测试Longley数据集与NIST提供的认证值的一致性。数据来源:J. Longley (1967) "An Appraisal of Least Squares Programs for the Electronic Computer from the Point of View of the User" Journal of the American Statistical Association, vol. 62. September, pp. 819-841. 认证值(和数据)来自NIST:http://www.itl.nist.gov/div898/strd/lls/data/LINKS/DATA/Longley.dat
    • testSwissFertility 链接图标

      public void testSwissFertility()
      测试R瑞士生育数据集与R的一致性。数据来源:R数据集包
    • testHat 链接图标

      public void testHat()
      测试帽子矩阵计算
    • testYVariance 链接图标

      public void testYVariance()
      测试calculateYVariance
    • checkVarianceConsistency 链接图标

      protected void checkVarianceConsistency(OLSMultipleLinearRegression model)
      验证calculateYVariance和calculateResidualVariance返回的值与直接从Y、残差计算的方差值一致。
    • testNewSample2 链接图标

      public void testNewSample2()
      验证分别设置X和Y与newSample(X,Y)具有相同效果。
    • testNewSampleDataYNull 链接图标

      public void testNewSampleDataYNull()
    • testNewSampleDataXNull 链接图标

      public void testNewSampleDataXNull()
    • testWampler1 链接图标

      public void testWampler1()
    • testWampler2 链接图标

      public void testWampler2()
    • testWampler3 链接图标

      public void testWampler3()
    • testWampler4 链接图标

      public void testWampler4()
    • testSingularCalculateBeta 链接图标

      public void testSingularCalculateBeta()
      任何需要beta计算的内容都应该宣传SME。
    • testNoSSTOCalculateRsquare 链接图标

      public void testNoSSTOCalculateRsquare()
    • testNoDataNPECalculateBeta 链接图标

      public void testNoDataNPECalculateBeta()
    • testNoDataNPECalculateHat 链接图标

      public void testNoDataNPECalculateHat()
    • testNoDataNPESSTO 链接图标

      public void testNoDataNPESSTO()
    • testNewSampleDataNoIntercept 链接图标

      public void testNewSampleDataNoIntercept()
      来自http://stackoverflow.com/questions/37320008/ols-multiple-linear-regression-with-commons-math